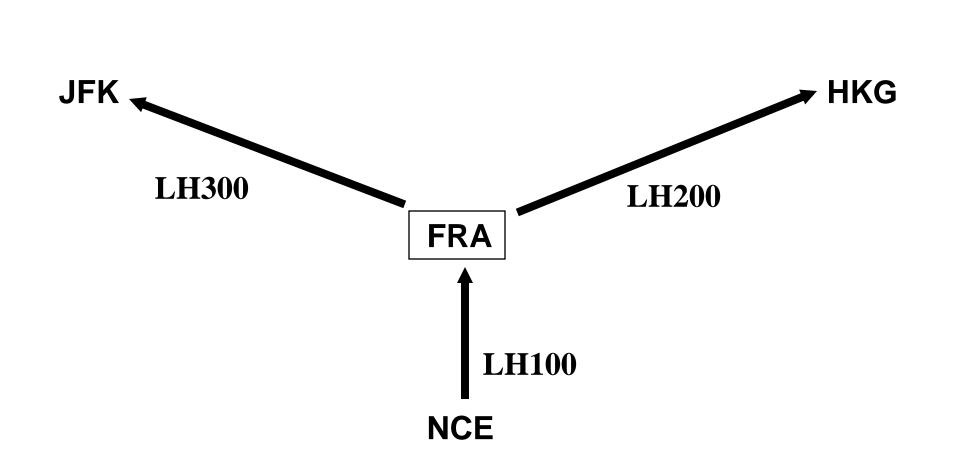


Network Revenue Management: O&D Control Dr. Peter Belobaba

Istanbul Technical University Air Transportation Management M.Sc. Program Network, Fleet and Schedule Strategic Planning Module 23 : 4 April 2015


Background: Fare Class Control

- Majority of world airlines still practice "fare class control":
 - High-yield ("full") fare types in top booking classes
 - Lower yield ("discount") fares in lower classes
 - Designed to maximize yields, not total revenues
- Seats for connecting itineraries must be available in same class across all flight legs:
 - Airline cannot distinguish among itineraries
 - "Bottleneck" legs can block long haul passengers

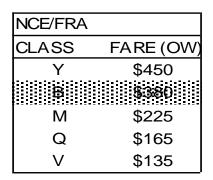
Yield-Based Fare Class Structure (Example)

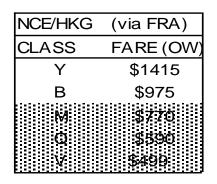
BOOKING	FARE PRODUCT TYPE
CLASS	
Y	Unrestricted "full" fares
В	Discounted one-way fares
M	7-day advance purchase
	round-trip excursion fares
Q	14-day advance purchase
	round-trip excursion fares
V	21-day advance purchase or
	special promotional fares

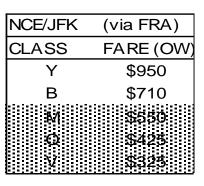
O-D Control Example: Hub Network

Leg-Based Class Availability

FLIGHT LEG INVENTORIES


LH 100	NCE-FRA	LH 200	FRA-HKG	LH 300	FRA-JFK
CLASS	AVAILABLE	CLASS	AVAILABLE	CLASS	AVAILABLE
Y	32	Y	142	Y	51
В	18	В	118	В	39
M	0	М	97	M	28
Q	0	Q	66	Q	17
V	0	V	32	V	0

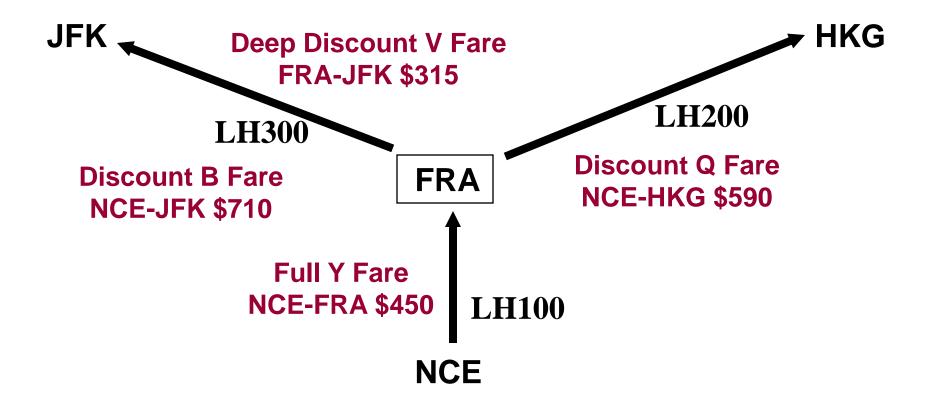

ITINERARY/FARE AVAILABILITY


NCE/FRA	LH 100	Y	В			
NCE/HKG	LH 100 LH 200	Y Y		Μ	Q	V
NCE/JFK	LH 100 LH 300		B B	М	Q	

Leg Class Control Does Not Maximize Total Network Revenues

(A) SEAT AVAILABILITY: SHORT HAUL BLOCKS LONG HAUL

(B) SEAT AVAILABILITY:


LOCAL VS. CONNECTING PASSENGERS

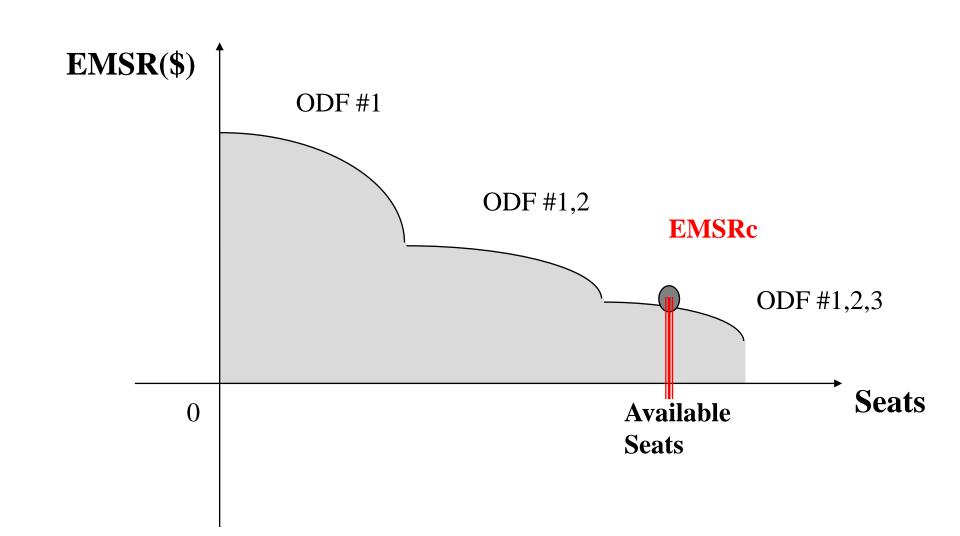
NCE/FRA	
CLASS	FARE (OW)
Y	\$450
B	\$380
M	\$225
Q	\$165
V	\$135

FRA/JFK	
CLASS	FARE (OW)
Y	\$920
В	\$670
М	\$515
Q	\$385
V	\$315

NCE/JFK	(via FRA)
CLASS	FARE (OW)
Y	\$950
в	\$710
M	\$550
Q	\$425
V	\$325

QUESTION: With 1 seat available on each flight leg, which of these 4 O-D requests should we accept to maximize network revenue?

What is O-D Control?


- The capability to respond to different O-D requests with different seat availability.
- Can be implemented in a variety of ways:
 - Revenue value buckets ("greedy approach")
 - EMSR heuristic bid price (HBP)
 - Displacement adjusted virtual nesting (DAVN)
 - Network probabilistic bid price control (ProBP)
- All of the above can increase revenues, but each one has implementation trade-offs.

Marginal Value of Last Seat on a Leg

• Marginal value concept is basis of leg RM:

- Accept booking in fare class if revenue value exceeds marginal value of last (lowest valued) remaining available seat on the flight leg
- In network RM, need to estimate marginal network value of last seat on each leg:
 - Can be used as "displacement cost" of a connecting vs. local passenger
 - Or, as a minimum acceptable "bid price" for the next booking on each leg

Marginal Network Value of Last Seat

Displacement Adjusted Network Value

- Actual value of an ODIF to network revenue on a leg is less than or equal to its total fare:
 - Connecting passengers can displace revenue on down-line (or up-line) legs
- → Given estimated down-line displacement, ODFs are ranked based on <u>network</u> value on each leg:
 - Network value on Leg 1 = Total fare minus sum of down-line leg displacement costs
 - Under high demand, availability for connecting passengers is reduced, locals get more seats
- Network optimization mathematics needed to estimate displacement costs for each flight leg

O-D Optimization Concepts

Conceptual steps in O+D optimization process

- ODIFs are ranked according to their network revenue value, regardless of fare restrictions
- Network revenue values account for displacement of passengers (and revenue) on connecting legs
- Bid price calculated for each flight leg in network, reflecting marginal value of remaining seat(s)
- Or, booking limits calculated to determine seat availability by revenue value virtual bucket
- In the following FRA hub example, we focus on the NCE-FRA leg to illustrate this process

Ranking by ODIF Revenue Value

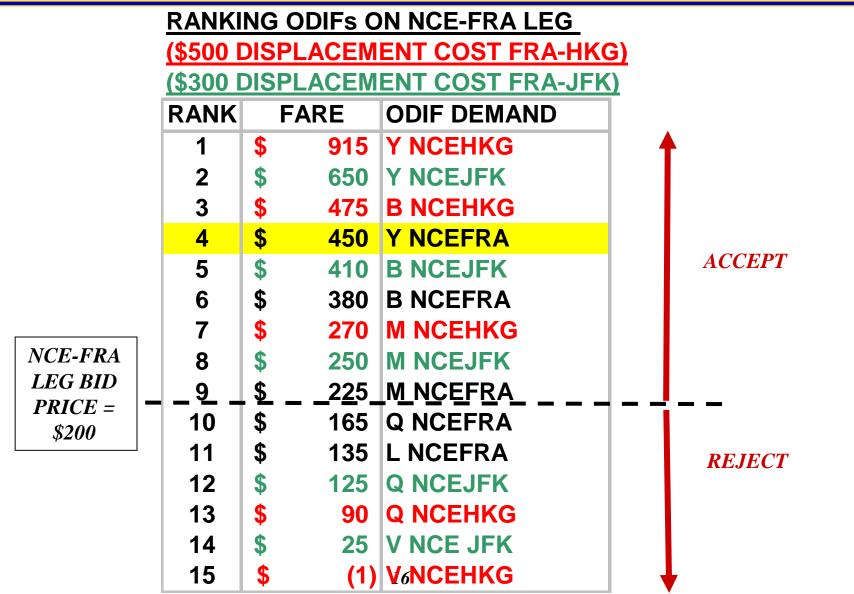
RANKING ODIFs ON NCE-FRA LEG					
RANK	FARE		ODIF DEMAND		
1	\$	1,415	Y NCEHKG		
2	\$	975	B NCEHKG		
3	\$	950	Y NCEJFK		
4	\$	770	M NCEHKG		
5	\$	710	B NCEJFK		
6	\$	590	Q NCEHKG		
7	\$	550	M NCEJFK		
8	\$	499	V NCEHKG		
9	\$	450	Y NCEFRA		
10	\$	425	Q NCEJFK		
11	\$	380	B NCEFRA		
12	\$	325	V NCE JFK		
13	\$	225	M NCEFRA		
14	\$	165	Q NCEFRA		
15	\$	135	V NCEFRA		

Ranking with Displacement Adjustment

RANKING ODIFs ON NCE-FRA LEG					
<u>(\$500 </u>	DISF	PLACEM	ENT COST FRA-HKG)		
RANK	F	FARE	ODIF DEMAND		
1	\$	950	Y NCEJFK		
2	\$	915	Y NCEHKG		
3	\$	710	B NCEJFK		
4	\$	550	M NCEJFK		
5	\$	475	B NCEHKG		
6	\$	450	Y NCEFRA		
7	\$	425	Q NCEJFK		
8	\$	380	B NCEFRA		
9	\$	325	V NCE JFK		
10	\$	270	M NCEHKG		
11	\$	225	M NCEFRA		
12	\$	165	Q NCEFRA		
13	\$	135	L NCEFRA		
14	\$	90	Q NCEHKG		
15	\$	(1)	V NCEHKG		

Ranking with Displacement Adjustment

RANKING ODIFs ON NCE-FRA LEG								
(\$500 DISPLACEMENT COST FRA-HKG)								
(\$300 DISPLACEMENT COST FRA-JFK)								
RANK		FARE	ODIF DEMAND					
1	\$	915	Y NCEHKG					
2	\$	650	Y NCEJFK					
3	\$	475	B NCEHKG					
4	\$	450	Y NCEFRA					
5	\$	410	B NCEJFK					
6	\$	380	B NCEFRA					
7	\$	270	M NCEHKG					
8	\$	250	M NCEJFK					
9	\$	225	M NCEFRA					
10	\$	165	Q NCEFRA					
11	\$	135	L NCEFRA					
12	\$	125	Q NCEJFK					
13	\$	90	Q NCEHKG					
14	\$	25	V NCE JFK					

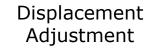

15

\$

(1)

NCEHKG

Ranking with Displacement Adjustment


Virtual Class Mapping with Displacement

FARE VALUES BY ITINERARY

NCE/FRA		NCE/H	KG (via FRA)	NCE/J	IFK (via FRA)
CLASS	FARE (OW)	CLASS	G FARE (OW)) CLAS	S FARE (OW)
Y	\$450	Y	\$1415	Y	′ \$950
В	\$380	В	\$975	В	8 \$710
M	\$225	M	\$770	N	1 \$550
Q	\$165	Q	\$590		Q \$425
V	\$135	V	\$499		/ \$325

MAPPING OF ODFs ON NCE/FRA LEG TO VIRTUAL VALUE CLASSES

VIRTUAL	REVENUE	MAPPING OF	
CLASS	RANGE	O-D MARKETS/CLASSES	
1	1200 +	Y NCEHKG	
2	900-1199	B NCEHKG Y NCEJFK	
3	750-899	M NCEHKG	
4	600-749	B NCEJFK	
5	500-599	Q NCEHKG M NCEJFK	
6	430-499	V NCEHKG Y NCEFRA	
7	340-429	B NCEFRA Q NCEJFK	
8	200-339	V NCEJFK M NCEFRA	
9	150-199	Q NCEFRA	
10	0 - 149	V NCEFRA	

Alternative Mechanism: Bid Price

• Under value bucket control, accept ODF if its network value falls into an available bucket:

Network Value > Value of Last Seat on Leg; or Fare - Displacement > Value of Last Seat

• Same decision rule can be expressed as:

Fare > Value of Last Seat + Displacement, or Fare > Minimum Acceptable "Bid Price" for ODF

• Much simpler inventory control mechanism than virtual buckets:

- Simply need to store bid price value for each leg
- Evaluate ODF fare vs. itinerary bid price at time of request
- Must revise bid prices frequently to prevent too many bookings of ODFs at current bid price

Example: Bid Price Control

- Given leg bid prices
 - A-B: \$35 B-C: \$240 C-D: \$160
- Availability for O-D requests B-C:

	Bid Price = \$240	Available?
Y	\$440	Yes
Μ	\$315	Yes
В	\$223	Νο
Q	\$177	No

Example: Bid Price Control

No

A-B:	\$35	B-C:	\$240	C-D:	\$160	
A-C	Bid Price = \$275			Available?		
Υ	\$519			Yes		
Μ	\$374			Yes		
В	\$292			Yes		
Q	\$201			No		
<u>A-D</u>	Bid Price = \$435			Available?		
Υ	\$582			Yes		
Μ	\$399	3399			No	
В	\$322			No		

Q

\$249

Network Optimization Methods

- Network optimization mathematics needed for both bid price and value bucket controls.
- Several optimization methods to consider:
 - Deterministic Linear Programming
 - Nested Probabilistic Network Bid Price
 - Dynamic Programming (applied to each leg after displacement adjustment)

• Simulated revenue gains are quite similar:

 ODF database, forecast accuracy and robustness under realistic conditions make a bigger difference

Network LP (Deterministic)

Maximize Total Revenue = Sum [Fare * Seats]

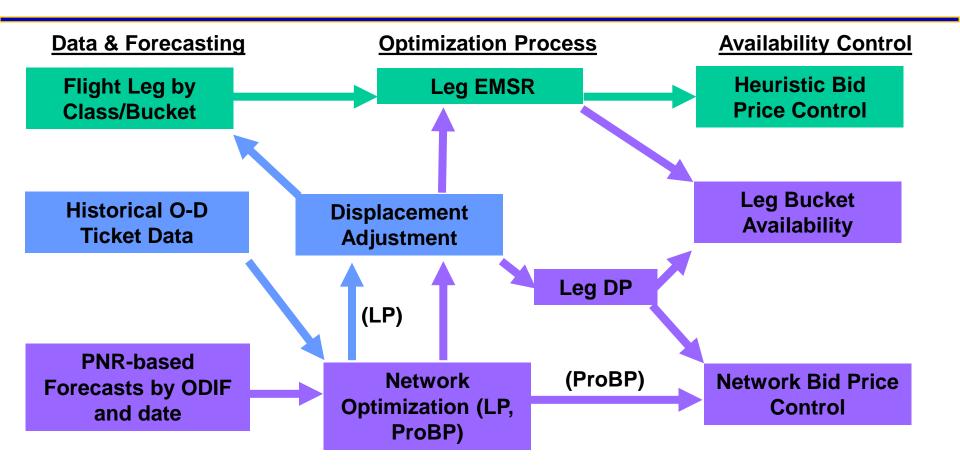
Summed over all ODFs on network

Subject to following constraints:

Seats for each ODF <= Mean Forecast Demand Sum[Seats on Each Leg] <= Leg Capacity

Outputs of LP solution:

- Seats allocated to each ODF (not useful)
- "Shadow price" on each leg (reflects network revenue value of last seat on each flight leg)
- Used as estimates of "displacement cost" for all connecting ODFs, for virtual nesting controls


O-D Control System Components

- Much more than an optimization model:
 - Database Requirements: Leg/bucket vs. ODF.
 - <u>Forecasting Models</u>: Level of detail to match data; detruncation and estimation methods.
 - <u>Optimization Model</u>: Leg-based or network tools; deterministic vs. probabilistic; dynamic programs
 - <u>Control Mechanism</u>: Booking classes vs. value buckets vs. bid price control.

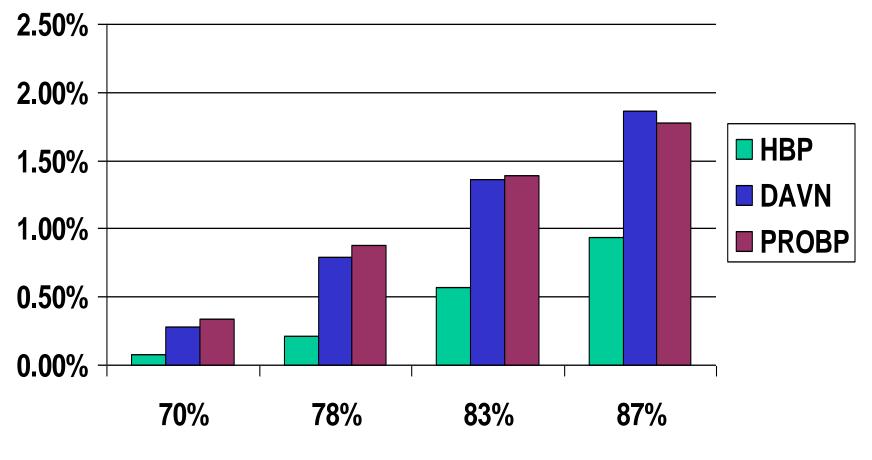
• Many effective combinations are possible:

Revenue gain, not optimality, is the critical issue.

Overview of O-D System Alternatives

Potential for O-D Control

• Simulations show potential O-D revenue gain:


 As much as 1-2% additional gain over leg/class control under ideal simulation conditions

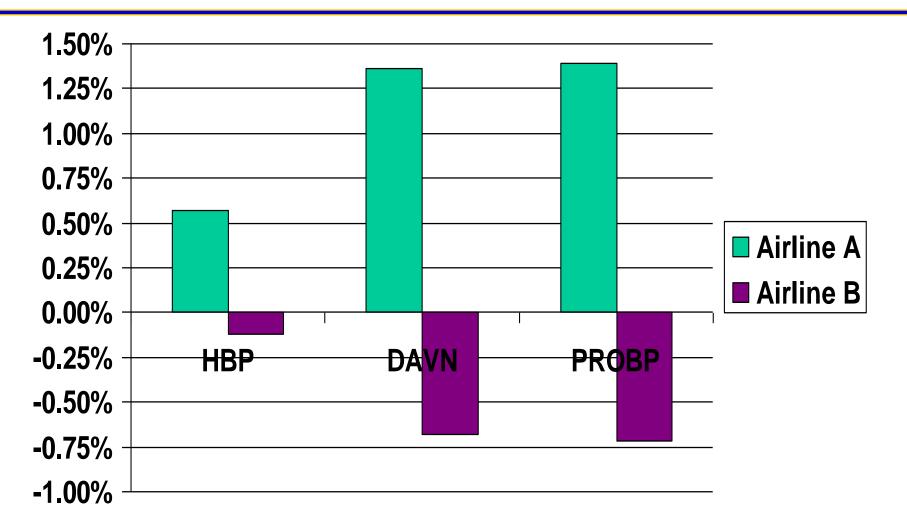
• Network characteristics affect O-D benefits:

- Substantial connecting traffic required
- High demand factors on at least some feeder legs
- Greater benefits with greater demand variability
- CRS seamless availability links essential:
 - Different responses to different ODF requests

Incremental Revenue Gains of 1-2%

O-D Control vs. Leg/Class RM

Network Load Factor


Additional Benefits of O-D Control

- Simulation research and actual airline experience clearly demonstrate revenue gains of O-D control
 - Return on investment huge; payback period short
 - Even 1% in additional revenue goes directly to bottom line
- O-D control provides strategic and competitive benefits beyond network revenue gains
 - Real possibility of revenue loss without O-D control
 - Improved protection against low-fare competitors
 - Enhanced capabilities for e-commerce and distribution
 - Ability to better coordinate RM with alliance partners

Competitive Impacts of O-D Methods

- Implementation of O-D control can have negative revenue impacts on competitor:
 - Continued use of basic FCYM by Airline B against O-D methods used by Airline A results in <u>revenue losses</u> for B
 - Not strictly a zero-sum game, as revenue gains of Airline A exceed revenue losses of Airline B
 - Other PODS simulation results show both airlines can benefit from using more sophisticated O-D control
- Failure to implement network RM (O-D control) can actually lead to revenue losses against competitor!

Competitive Impacts of O-D Control Network ALF=83%, Airline B with Basic YM

Response to Low-Fare Competition

- Under basic leg/fare class RM, no control over different O-D markets booking in each class
 - With low-fare competitor, matching fares requires assignment to specific fare class
 - Fare class shared by all O-D itineraries using same flight leg and supply of seats
- With O-D control, bookings are limited by network revenue value, not fare type or restrictions
 - Low matching fares will still be available on empty flights
 - But will not displace higher revenue network passengers

Changing Distribution Channels

- O-D control also allows for improved control of bookings by distribution channel
 - Differential valuation of origin-destination-fare requests from a growing variety of alternative distribution options
 - Each new distribution channel represents an opportunity to increase revenues, but also a major risk of revenue dilution
 - Different costs and net revenue values to the airline

• In e-commerce, RM fundamentals are unchanged

- Forecast and protect seats for high revenue ODF requests
- Use O-D control to accept bookings only from channels and points of sale that will increase total network revenues

Summary: Airline O-D RM Systems

• O-D control is the 4th generation of RM:

- Data collection, forecasting, optimization and control by origindestination-fare type as well as distribution channel
- Not just a revenue enhancement tool, a strategic and competitive necessity for airlines:
 - Incremental network revenue gains of 1-2% over basic RM
 - Essential to protect against revenue loss to competitors
 - Increased control of valuable inventory in the face of pricing pressures, new distribution channels, and strategic alliances